What is drilling?
The well is created by drilling a hole 5 to 50 inches (127.0 mm to 914.4 mm) in diameter into the earth with a drilling rig that rotates a drill string with a bit attached. After the hole is drilled, sections of steel pipe (casing), slightly smaller in diameter than the borehole, are placed in the hole. Concrete may be placed between the outside of the casing and the borehole. The casing provides structural integrity to the newly drilled wellbore, in addition to isolating potentially dangerous high pressure zones from each other and from the surface.
Drilling Spot
What will happen while drilling the well?
The drill bit, aided by the weight of thick walled pipes called "drill collars" above it, cuts into the rock. There are different types of drill bit; some cause the rock to disintegrate by compressive failure, while others shear slices off the rock as the bit turns.
Drilling fluid, a.k.a. "mud", is pumped down the inside of the drill pipe and exits at the drill bit. Drilling mud is a complex mixture of fluids, solids and chemicals that must be carefully tailored to provide the correct physical and chemical characteristics required to safely drill the well. Particular functions of the drilling mud include cooling the bit, lifting rock cuttings to the surface, preventing destabilisation of the rock in the wellbore walls and overcoming the pressure of fluids inside the rock so that these fluids do not enter the wellbore.
The generated rock "cuttings" are swept up by the drilling fluid as it circulates back to surface outside the drill pipe. The fluid then goes through "shakers" which strain the cuttings from the good fluid which is returned to the pit. Watching for abnormalities in the returning cuttings and monitoring pit volume or rate of returning fluid are imperative to catch "kicks" early. A "kick" is when the formation pressure at the depth of the bit is more than the hydrostatic head of the mud above, which if not controlled temporarily by closing the blowout preventers and ultimately by increasing the density of the drilling fluid would allow formation fluids and mud to come up through the annulus uncontrollably.
The pipe or drill string to which the bit is attached is gradually lengthened as the well gets deeper by screwing in additional 30-foot (9 m) sections or "joints" of pipe under the kelly or topdrive at the surface. This process is called making a connection, or "tripping". Joints can be combined for more efficient tripping when pulling out of the whole by creating stands of multiple joints. A conventional triple, for example, would pull pipe out of the hole three joints at a time and stack them in the derrick. Many modern rigs, called "super singles," trip pipe one at a time, laying it out on racks as they go.
This process is all facilitated by a drilling rig which contains all necessary equipment to circulate the drilling fluid, hoist and turn the pipe, control downhole, remove cuttings from the drilling fluid, and generate on-site power for these operations. Thus, it comes down to solids control equipment. Solids control equipments are a series of equipments to treat the solids particles from drilling fluid, so that drilling fluid can be recycled and satisfy the requirement under the drilling operation again, and assist the drilling bit to enter into the normal work.
Drilling Solids Control Equipment
All in all, in drilling, solids control equipment is indispensable, including drilling fluid. For about 21years now, KOSUN exclusively handles oil & gas drilling fluids solids control equipment and solids control system, as well as varieties of chemical agent, such as shale shaker, decanter centrifuge, desander, vacuum degasser, electrical ignition device, mud cleaner, centrifugal pump, mud agitator, etc. Any further information, you are welcome to contact us.